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Syntheses for the Deconvolution of the Patterson Function. Part IV. Refinement
of the Theory and a General Comparison of the Various Syntheses
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The details of the y class of syntheses are given in this paper. The theory of the standard syntheses
namely, |F|, exp [ta], exp [2¢x], 1/|F| and 1/F is refined to the next higher order of approximation.
The results are then applied to work out the ratio g of the strength of the peak at the unknown to

that at the known atomic positions in the «, 8, ¥, «

’, B’ and y" syntheses. Finally a general comparison

of the various syntheses is made using the above ratio as the criterion for judging their relative

merits.

1. Introduction

In Part I (Ramachandran & Raman, 1959) of this
series were outlined the general principles involved in
certain classes of syntheses which were proposed for
developing a structure from its Patterson function
when a part of it is known. The more detailed mathe-
matical aspects of the problem were presented in
Part IT (Raman, 1959) and the treatment there

pertained to the general case of a non-centrosymmetric
structure. The extension of the theory to the centro-
symmetric case was considered in Part III (Raman,
1961).

Two of the classes, namely & and 8 were discussed
at length in the earlier parts and it was pointed out
that the third class, namely the y, was likely to have
properties in between the « and g classes. The existence
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of another series of syntheses called the «’, §” and 3’
syntheses which are closely related to the «, § and y
classes respectively was also pointed out in Part I.

The interpretation of these different classes of
syntheses demanded first the analysis of the signifi-
cance of the standard classes of syntheses which em-
ploy as Fourier coefficients the quantities |F|, exp[i«a],
1/F etc. In the earlier parts, the properties of these
standard syntheses were worked out only to the first
order of approximation. This paper is primarily con-
cerned with working out theoretically the various
standard syntheses to the next higher order of ap-
proximation. The necessity of this refinement was
actually felt while applying the earlier results to the
interpretation of the various syntheses. As was men-
tioned in Part I, an exact interpretation is possible
only for the « class of syntheses whereas the others
could be worked out only to various degrees of
approximation. The second order of approximation
has therefore been applied to the different classes and
their relative merits of each are discussed in this paper.
The power of the different syntheses to reveal the
unknown part of the structure is judged from the value
of the ratio (g) of the peak strengths at the required
atomic positions to those at the known positions.

Further, for the sake of completeness, a brief discus-
sion of the details of the y class of syntheses is given
in section 2. This should be reckoned along with those
given for the « and g classes (Part IT). Further, a close
study of the nature of these syntheses and of the
dashed series have revealed a striking fact which
helps us to give a unified formulation of the whole
theory. This is also considered in the next section.
The notation follows that of the earlier parts.

2. The y class of syntheses

The y class of syntheses follows as a natural conse-
quence of the study of the « and § classes. In the
& class a known function of the quantities |Fy|2 and
|Fp|? is multiplied by the structure factor Fp (i.e.,
by |Fp|exp [ixp]) of the known part, while in the
8 class the same function is divided by F3% (which is
equivalent to multiplication by (exp [txp]/|Fp|). The
intermediate process would obviously be to use the
phase factor exp [ixp] alone for multiplication. It is
possible to show that this would also lead to the
development of the unknown part of the structure by
the following argument. A careful study of the nature
of the « and f classes shows that the part used for
the purpose of deconvolution resembles closely the
structure of the known part. While in the case of the
o class this is obvious, since Fp itself is used, it is not
so evident in the case of the § class which uses (1/F¥).
But it has been pointed out in Part I that the synthesis
1/F¥ resembles Fp to a first approximation. So also
it has been shown that the phase synthesis exp [tap]

resembles, to a first approximation, the structure Fp

and hence exp [t p] itself can be used for the purpose
of deconvolution.

A study of the synthesis using the modulus of the
structure amplitude, namely, |[F| as coefficients
(Part IT) shows that it resembles closely the Patterson
function. This immediately suggests that it should be
possible to use | F| itself, instead of the intensities, with
either Fp, 1/F% or exp [iar] for extracting the un-
known part of the structure. This gives rise to the new
series of syntheses namely «’, §” and y’ which make
use of the Fourier coefficients |Fn|Fp, |Fn|/F} and
|Fn| exp [(axp]. In fact, a synthesis using any power
of |F| resembles, to a first approximation, the Patter-
son function. Thus calculation shows that a synthesis
using |F2|” as coefficients has, as a first approximation,
an origin peak of strength 827 and peaks at the same
position as in the Patterson, namely at (r;—r;) having
strengths nf;f;S@7-2), Thus the relative weights of the
non-origin to the origin peak in the |F|2# synthesis is
n times that in the ordinary Patterson function.

Using this argument it is readily seen that even more
generally the whole series of syntheses having Fourier
coefficients of the form |Fxy|m|Fp|® exp [ixp] are ca-
pable of revealing the unknown @ atoms. When m =2
and n=1, —1, 0, we get respectively the «, 8, y classes
and when m=1, n=1, —1, 0, we get the &', " and »’
classes of syntheses. It appears that the more general
types are not so useful as the six types «,f§,y and
the &', §', v".

The general y synthesis (Vgen)

The ygen synthesis uses as its coefficients the
function |Fy|2exp [{ap]. It can be shown that this
reduces to

Ygen=

|Fp|Fp+|Fol2 exp [taxp]+ Fp exp [iap]FE+ Fo|Fpl| .
9 (10) an (12)

(The numbering is in conformity with Parts I and II).
The synthesis therefore consists of four parts, (9) to
(12) as in the case of xgen and fgen, each of which
can be interpreted as a modulation of the different
standard syntheses discussed in Part II. The term (12)
contains the required structure @. The other terms
besides containing the known peaks also contribute
to the background. The term (11) consists of the
modulation of three quantities Fp, exp [{ap] and F}.
In working out the positions of the peaks and their
strengths we need consider only the first-order inter-
action. Table 1 gives the number, position and weight
of the various peaks in the ypgen synthesis. This can
be compared with Tables 1 and 2 (Part II) of the
&gen and fgen syntheses respectively.

Modified y synthesis (ymoa)
The modified y synthesis takes the form
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Ymod= (| F |2 — |FPi2—2;féj) exp [txp]
i

=exp [iar] [ 2 2 foifo; exp [27iH. (roi—Tg;)]]
isf
+FPF3 exp [top]+ Fo|Fp| .

The peaks of (10), (11) and (12) with the exception of
(10-1) are present in ymoa. The unwanted background
is therefore lower here than in the case of ygen.

Isomorphous y synthesis (yis)
Analogous to the «is and fis we have

Vis=[(1FW2— |FP2) — (IFP2— | FP?)] exp [ixp] .
This is equivalent to (Part IT)
YVis = |FP|FQ+eXp [iocp]FpF3 .

Thus yis gives the structure against the background
of (11-1) and (11-2) and is thus similar to Bis.

Anomalous y synthesis (an)
It is clear that

Yan=[Fp| fan
=|Fpl (34 |F |2~ FpFp* + Fp*F) exp [iar]

which is equivalent to
(FoFp* 4+ F}F7y) exp [icp] = Fol Fr*|+ Fpexp [tap) F§ .

Thus the structure Fq is obtained against a back-
ground which is partly positive and partly negative
and in this respect it resembles more the xan than the
fan synthesis.

3. Refinement of the standard syntheses

The interpretation of the standard syntheses in the
earlier parts was essentially based on an analysis of
the nature of the modulus (|F|) synthesis. This was
achieved first by taking |{F| in its equivalent form
(|F|2)* and expanding it as a ‘Taylor series’. The
knowledge of the properties of the modulus synthesis
coupled with the principle of modulation led to the
properties of the phase synthesis exp [{axp] from the
equality [F| exp [tx]=F. A similar procedure was then
adopted for interpreting the other types of syntheses.
However, because of the very nature of the approx-
imation involved, it was not possible to solve for the
peak strengths exactly and the values given for the
peak strengths in Part IT correspond only to the first
order of approximation.

The procedure adopted here for working out the
next higher order of approximation is as follows.
An examination of the results in Part II would show
that the peak strengths are equal to some multiple of
a product of the f;’s with a power of Sy; e.g., the peak
at (r;—ry) of the modulus synthesis has a strength
%.fifs/Sn. It is obvious that the peak positions are
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unaffected by the order of approximation and also
that the relative order of magnitude of the different
types of peaks are also unaffected; e.g., the origin
and the non-origin peaks of the modulus synthesis
are of the order of Sy and fif;/Sny. This is readily
verified by checking the equations used for working
out their strengths (also the equations to be given
below), in which only quantities of the same order of
magnitude are equated. On the other hand the co-
efficient which multiplies the product (fif;...S%)
changes with the order of approximation used.
Anticipating a result to be worked out below, the
coefficients « and f of Sy and fif;/Sy for the |F|
synthesis are respectively 1 and 4 to the first order of
approximation while they become 0-92 and 0-38 to
the second order.

The main principle used in working out the higher
order of approximation is to take all terms to this
order in the various equations and to equate them.
The procedure is best understood with reference to the
modulus synthesis which is obtained from the equation

|F||F|=|F2. (1

It is now assumed that the |F| synthesis contains a
first-order peak of strength «Sy at the origin and
second-order peaks of strengths Bfif;/S~ at (ri—ry),
where « and § are the unknowns. On the right-hand
side we have the Patterson synthesis which is known
to contain a peak of strength S% at the origin and
second-order peaks of strengths fif; at (r:—r;). The
contribution to the origin term from the left-hand side
arises from two types of interaction between the |F|
syntheses:

(@) those between the origin peaks «Sy and
(b) those between the non-origin peaks Sf:f;/Sn.

The total contribution to the origin term on the
left-hand side can easily be shown to bet («2+ 52)S%
and this is equated to the corresponding term on the
right-hand side, giving the equation

w2t fr=1. @)
A similar calculation of the peak strength given by

both sides of the equation at the position (r;—ry)
leads to the equation

20(x+p)=1. (3)

A solution of these two equations leads to the values
x=0924 and $=0-383. It may be pointed out that
taking the first approximation to « and f is equivalent
to solving the two equations

(2a)

1 There is a small approximation involved in writing the
second term as $%S%, in that Zijf}?(i:izj) is put equal to
]

(fo)z. The error is not serious if N is large.
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2af=1, (3a)

analogous to equations (2) and (3) above, which are
obtained by taking only terms upto the first order in
equation (1). These lead to the values of x=1, §=0-5
given in Pait II. These refined values of «(=0-924)
and B(=0-383) are taken as the starting point for

Table 1. Peaks in ygen synthesis

Corresponding
peak in
Desig- Table 1 Table 2
Strength Position nation  (of Part II)
friSp+ 3 f%,/28p rp; 91 11 51
i
SpifpifPe/28p  Tpi+Tpi—Tpg 9-2 1.2 —
(2,7Fk)
SFepShlSe rpj 10-1 21 61
fpkaifQj/Sp Tprp+TQ;—Trq; 10-2 2-2 6-2
(t=F9)
—fpifPefPiS z/ 28% rpj+rpr—rp;  10-3 — 6-3
(k=)
fQif%i/SP 2rp;—ro; 11-1 31 71
2fpifpiferlSp Tri+rpj—Tor 11:2 32 7-2
(257)
fQjSp rQj 12-1 4-1 81
Spifpifer/Sp rp;+rpj—ror 122 42 —

)]

Table 2. Peaks in the standard syntheses
Value of the

Synthesis  Peak strength Position unknowns
1P oSy 0 x= 092
BfifilSw ri—r1; B= 038
oxp [a] zfilSn r; x= 090
YfifiFulS% r;+1;—Tg y=—0-45
oxp [2ia]  XfifslSk i+ X= 085
YhififefiSy  ritrj—rp4+r;  ¥=-—250

L/1F| YISy 0 y= 12
8fifIS% r—1; o= —0217
1/F Pfi/sfv —T; p= 095
afififulSh ~r;—Tj+rg =—0-66

working out the results for the other standard syn-
theses such as exp [¢o], exp [2ix] etc. However, un-
like in Part II, where a particular equation alone is
used for working out the results for each synthesis,
a number of equations connecting these are used here.
Thus, if we combine |F| with exp [t«] and exp [2ix],
we obtain the following simple combinations (4) to
(10), connecting the above synthesis and the well-
known syntheses F, F2 and |F|2.

|F| exp [ia] = F

®

exp [ta].exp [—tx] = 1

|F|? exp [ix] =|F|F

—_— o~
(=2
- =

|Fi2exp [ia] = F2exp [—ix] (7)

|F|2 exp [2ix] = F? (8)
exp [t].exp [ta] = exp [2¢x] 9)
|F| exp [2tx] = F exp [1c] . (10)

In each of these equations the peak strengths cor-
responding to the first and second order can be worked
out from both sides and they lead to the following
sets of equation. Using the designations adopted in

Table 2,
2ot B)+ By = 1 (1:00) [1-25] } an
y(x+26)+ 2z = 0 (0:08) [0-0]
24y =1 (1-:01) [1-25] Y
224 20y = 0 (0:0)  [0:0] } (12)
2 ty—o—f =0 (0:05) [0-0] } 13)
243y—f = 0 (0:07) [0:0]
z+2y =0 (0-0)  [0-0] (14)
X—1=0  (=010) [0:0]
Y43X =0  (—020) [*] } (15)
2u(z4+y)—X =0  (—0-09) [0:0]
bey—Y =0  (—007) [*] } (16)
X(x+28)— 22—y = 0 (016) [0:0] } )
5Y+38X—3y = 0 (0-08) [*]

All the equations (4) to (10) are exactly valid. How-
ever, the equations (11) to (17) worked out from these
are valid only to the second order of approximation
and therefore no values of «, 8, 2,4 and X, ¥ will
fit them all exactly. By a method of trial and error,
the following set of values, correct to two significant
figures have been deduced:

x=092, =0-38; 2=0-90, y= —0-45;
X=090, Y=-25.

The values obtained for the right-hand sides of
equations (11) to (17) using these values are given in
round brackets which would give an idea of the
accuracy of the approximation. The values obtained
using the first approximation of Part II, namely,

a=1, §=05; =10, y=—05; X=1-0, Y=*;

are also given within square brackets. It will be seen
that the first approximation leads to large errors in
some cases.

Now for obtaining the values of p and ¢ of the
reciprocal synthesis (1/F) it is found convenient to
interpret (1/F) as of the form

1/F=(1/|F|) exp [ —%x] . (18)

The unknowns y and J of the first term on the right-
hand side, namely, the reciprocal modulus synthesis

* Y does not occur in the first-order calculations.
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(1/{F|) were first obtained as described above, using
the set of equations

(\FDIF|2 = |F| (19)
A/IFDIF| =1 (20)
F(1/|F|) = exp [ix] (21)
F2(1/|F|) = F exp [ix] . (22)

Here, the quantities &, 8 and z, y of the modulus and
the phase syntheses were assumed to have the values
given above. The values of y and § thus deduced were
then found to be y=1-2 and §= —0-27. Using these
values in the equation (18) we get p=0-95 and
g= —0-66. These results are also included in Table 2.
It should be mentioned here that when the peak
strengths of the (1/F) synthesis were directly cal-
culated using various equations such as

F.(1/F)=1, (1/F)F2=F, (1/F)/F|2=F*,

inconsistent results were obtained when only quan-
tities up to the second order were included. Since the
|F| synthesis has been taken as the main one in our
discussions, the above method of working out the
(1/|F]) and then the (1/F) synthesis in terms of this
was adopted. The consistency of this procedure may
be verified from the fact that the equations arising
from the combinations (19) to (22) were fairly well
satisfied by the above values of v, d, p and g. How-
ever, some caution is necessary in the use of these
values of p and ¢ for the synthesis 1/F.

4. A general comparison of the «, 3, and y
syntheses

In order to compare the relative merits of the various
syntheses it is useful to have some criterion whereby
their utility may be judged. We can adopt for this
purpose the ratio g which is the ratio of the strength
of the peaks at the unknown positions to that at the
known positions. This ratio can be calculated for the
different classes of syntheses making use of the values
of the various constants given in Table 2. The cal-
culation of g in these cases demands fairly accurate
knowledge of the strengths and positions of the peaks
in the standard syntheses and in fact, the refinement
discussed in the last section was made mainly for this
purpose. The values of p for the different syntheses
are listed in Table 3. o’ corresponds to the limiting
case when P tends to N.

As expected, the y class of syntheses has properties
intermediate between the « and f classes. When the
three general syntheses, namely, ogen, fgen and Ygen
are compared (Table 1) it is seen that the positions
of the various peaks are the same in all of them though
in some cases their relative weights are different.
It is to be noted that the peak (4:2) of xgen is present
in ygen also, whilst it is absent from Pgen. In short
pgen contains peaks corresponding to both xgen and
Been sSyntheses.
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However, a comparison of the values of o (Table 3)
shows that the f§ synthesis is superior to both the
o and y syntheses as far as the peak strengths at the
required positions are concerned. In fact of all the
syntheses the § synthesis has the maximum value of g,
namely unity.

Table 3. Values of the ratio g of the strength of the peaks
at the unknown to that at the known atomic positions
in the various syntheses

Synthesis [ o’ (P — N)

o (S%/8% +S%) 0-50
B (8%/8%+ 0-955) 1-00
y (8%/1-478% + 0-985%) 0-67
o’ (8%/2:428% +5%) 0-29

i’ (8%/2-428% + 8% —0-708%/8%) 0-37

P N P PICN

y’ (8%/2-808% + 0-435%) 0-31

However, there arises one practical difficulty in
performing the B synthesis, as already pointed out in
Part II. Thus if some reflections have small values of
|F|, the corresponding coefficients in the f§ synthesis
tend to be large. Such terms should be neglected from
the summation. In both the & and y syntheses, this
difficulty obviously does not arise. But it should also
be noted that the ambiguity of phase for small values
of | F| is present in all types of syntheses, as for example
even in the usual heavy-atom (7’) synthesis. This type
of difficulty can therefore best be got over by omitting
such ambiguous terms from the summation.

Coming to the dashed series, it is clear that all of
them are in general inferior (judged from the value
of o) to the undashed syntheses. However, a word of
caution is necessary when applying this criterion of .
The value of p given here refers only to the case when
the background strength is zero. In an actual case
this may not be true, since the number of peaks
contributing to the background may be quite large
even though individually the strength of each peak
may not be high. The effect will be particularly serious
in projections since a large number of them can add
up to enhance the background strength. The value
of ¢ in such cases should obviously correspond to the
peak height over and above the background. Such
practical aspects of this problem are reserved for a
later paper.

The author wishes to express his sincere thanks to
Prof. G.N. Ramachandran for the valuable sugges-
tions he gave during this investigation.
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